## Wndsn Quadrant Telemeter Tutorials

*Making the most out of our graphical telemetry computers.*

Like with many complex instruments, there are multiple ways to solve certain problems and to measure the required inputs. Combining the various functions leads to a multitude of advanced uses.

## Finding Tangent

It is possible to use the shadow square to find the tangents of angles.

The tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side: so called because it can be represented as a tangent to the circle (the line that touches the circle), from Latin *linea tangens* or touching line (*tangere,* to touch). Now since tangent equals *opposite over adjacent*, we can use the shadow square by dividing the cosine into tenths or twelfths, in order to easily calculate the tangent as

tan(θ) = sin(θ) / cos(θ)

and read the tangent respectively.

### Degree to tangent

- Set string to degrees; 11
- Read mark where the string is crossing the shadow square; 2 on the inner scale with 10 divisions
- Thus tan(11) = 2/10 = 0.2
- (Note that for distance calculations, 1/tan(11) would be calculated as 10/2 = 5)

### Tangent to degree

- Set string to tangent on the shadow square; 3/12
- Read mark where the string is crossing the degree scale; 14
- Thus 3/12 = tan(14)